更多>>精华博文推荐
更多>>人气最旺专家

刘韦辰

领域:21财经

介绍:充值后系统会立即到账,刷新查看充值结果,金币在我要上传后面会显示充值的金币(1元=10金币)。...

骆祖浩

领域:风讯网

介绍:比如王菲、窦靖童、李嫣母女三人首次同台,周迅和王菲的“世纪同框”惊呆吃瓜群众。尊龙人生就是博旧版服务,尊龙人生就是博旧版服务,尊龙人生就是博旧版服务,尊龙人生就是博旧版服务,尊龙人生就是博旧版服务,尊龙人生就是博旧版服务

www918搏天堂域名
本站新公告尊龙人生就是博旧版服务,尊龙人生就是博旧版服务,尊龙人生就是博旧版服务,尊龙人生就是博旧版服务,尊龙人生就是博旧版服务,尊龙人生就是博旧版服务
aqd | 2019-01-24 | 阅读(903) | 评论(422)
有时候连老师都念错,让他成为全班的笑柄。【阅读全文】
尊龙人生就是博旧版服务,尊龙人生就是博旧版服务,尊龙人生就是博旧版服务,尊龙人生就是博旧版服务,尊龙人生就是博旧版服务,尊龙人生就是博旧版服务
2ho | 2019-01-24 | 阅读(179) | 评论(749)
本论文研究的MEMS红外光源具有电光转化效率高、辐射强度高、体积小、成本低、工作可靠以及可批量生产等显著特点,可以集成于光电特征标识装置、红外气体探测器、红外通信装置等多种红外应用系统中,在军事目标的识别与跟踪、人员搜索和营救、空气质量监测、矿业安全生产、药品成分分析、飞机降落指引以及船舶引航等方面具有良好的应用前景。【阅读全文】
d0x | 2019-01-24 | 阅读(376) | 评论(495)
在具体工作中,个人利益永远服从于党和人民的利益,努力为群众排忧解难,使自己的一言一行都要从先进党员的良好形象出发。【阅读全文】
dv0 | 2019-01-24 | 阅读(701) | 评论(308)
PAGE习题课——数列求和课后篇巩固探究A组1.已知数列{an}的前n项和为Sn,若an=1n(n+2),则                解析因为an=1n所以S5=a1+a2+a3+a4+a5=12答案D2.已知数列{an}的通项公式an=1n+n+1,若该数列的前k项之和等于9,则解析因为an=1n+n+1=n+1-n,所以其前n项和Sn=(2-1)+(3-2)+…+(n+1-n)答案A3.数列1,2,3,42716,…的前n项和为(  A.(n2+n-2)+(n+1)+1-3C.(n2-n+2)-(n+1)+31解析数列的前n项和为1++2++3++…+n+12×32n-1=(1+2+3+…+n)+12+34+98+…+1答案A4.已知{an}为等比数列,{bn}为等差数列,且b1=0,cn=an+bn,若数列{cn}是1,1,2,…,则数列{cn}的前10项和为(  )解析由题意可得a1=1,设数列{an}的公比为q,数列{bn}的公差为d,则q+d=1,q2+2d∵q≠0,∴q=2,d=-1.∴an=2n-1,bn=(n-1)(-1)=1-n,∴cn=2n-1+1-n.设数列{cn}的前n项和为Sn,则S10=20+0+21-1+…+29-9=(20+21+…+29)-(1+2+…+9)=1-2101-2-答案A5.已知数列{an}满足a1=1,a2=2,an+2=1+解析由题意可得a3=a1+1,a5=a3+1=a1+2,所以奇数项组成以公差为1,首项为1的等差数列,共有9项,因此S奇=9(1+9)2=45.偶数项a4=2a2,a6=2a4=22a2,因此偶数项组成以2为首项,2为公比的等比数列,共有9项,所以S偶=2(1-29)1-2答案D6.已知数列{an}的通项公式an=2n-12n,则其前n项和为解析数列{an}的前n项和Sn=2×1-12+2×2-122+…+2n-12n=2(1答案n2+n+12n7.数列112+3,1解析∵an=1n∴Sn=11=1=1118答案118.已知等差数列{an}的前n项和Sn满足S3=0,S5=-5.(1)求{an}的通项公式;(2)求数列1a2n-1a解(1)设{an}的公差为d,则Sn=na1+n(由已知可得3解得a故{an}的通项公式为an=2-n.(2)由(1)知1a从而数列1a2nTn=1=n19.导学号04994055(2017·辽宁统考)已知等差数列{an}的公差为2,且a1,a1+a2,2(a1+a4)成等比数列.(1)求数列{an}的通项公式;(2)设数列an2n-1的前n项和为Sn,求证:(1)解∵{an}为等差数列,∴a2=a1+d=a1+2,a4=a1+3d=a1+6.∵a1,a1+a2,2(a1+a4)成等比数列,∴(a1+a2)2=2a1(a1+a4即(2a1+2)2=2a1(2a解得a1=1,∴an=1+2×(n-1)=2n-1.(2)证明由(1),知an∴Sn=120+321Sn=121+322①-②,得Sn=1+21=1+2×1=1+2-1=3-4=3-2n∴Sn=6-2n∵n∈N*,2n+3∴Sn=6-2n+32B组1.已知数列{an}的通项公式an=(-1)n-1n2,则其前n项和为(  )                A.(-1)n-1n(n+1)(n+1解析依题意Sn=12-22+32-42+…+(-1)n-1n2.当n为偶数时,Sn=12-22+32-42+…-n2=(12-22)+(32-42)+…+[(n-1)2-n2]=-[1+2+3+4+…+(n-1)+n]=-n(当n为奇数时,Sn=12-22+32-42+…-(n-1)2+n2=Sn-1+n∴Sn=(-1)n-1n(n+1答案A2.已知数列{an}为12,13+23,14+24++1解析∵an=1+2+3+…∴bn=1anan∴Sn=41=41-答案A3.已知Sn是数列{an}的前n项和,a1=1,a2=2,a3=3,数列{an+an+1+an+2}是公差为2的等差数列,则S25=(  )解析令bn=an+an+1+an+2,则b1=1+2+3=6,由题意知bn=6+2(n-1)=2【阅读全文】
u1v | 2019-01-24 | 阅读(115) | 评论(153)
 极大值与极小值学习目标重点难点1.记住函数的极大值、极小值的概念.2.结合图象知道函数在某点取得极值的必要条件和充分条件.3.会用导数求不超过三次的多项式函数的极大、极小值.重点:利用导数求函数的极值.难点:函数极值的判断和与极值有关的参数问题.1.极值(1)观察下图中的函数图象,发现函数图象在点P处从左侧到右侧由“上升”变为“下降”(函数由单调________变为单调________),这时在点P附近,点P的位置最高,亦即f(x1)比它附近点的函数值都要大,我们称f(x1)为函数f(x)的一个________.(2)类似地,上图中f(x2)为函数的一个________.(3)函数的极大值、极小值统称为函数的______.预习交流1做一做:函数y=-|x|有极______值______.2.极值点与导数的关系观察上面的函数的图象,发现:(1)极大值与导数之间的关系如下表:xx1左侧x1x1右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)增极大值f(x1)减(2)极小值与导数之间的关系如下表:xx2左侧x2x2右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)减极小值f(x2)增预习交流2做一做:函数f(x)=3x-x3的极大值为________,极小值为________.预习交流3议一议:(1)导数为0的点一定是函数的极值点吗?(2)函数在极值点处的导数一定等于0吗?(3)一个函数在一个区间的端点处可以取得极值吗?(4)一个函数在给定的区间上是否一定有极值?若有极值,是否可以有多个?极大值一定比极小值大吗?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)递增 递减 极大值 (2)极小值 (3)极值预习交流1:提示:大 02.(1)>0 =0 <0 (2)<0 =0 >0预习交流2:提示:f′(x)=3-3x2,令f′(x)=0得x=±1,由极值的定义可得函数的极大值为f(1)=2,极小值为f(-1)=-2.预习交流3:提示:(1)不一定,例如对于函数f(x)=x3,虽有f′(0)=0,但x=0并不是f(x)=x3的极值点,要使导数为0的点成为极值点,还必须满足其他条件.(2)不一定,例如函数f(x)=|x-1|,它在x=1处取得极小值,但它在x=1处不可导,就更谈不上导数等于0了.(3)不可以,函数在一个区间的端点处一定不可能取得极值,因为不符合极值点的定义.(4)在一个给定的区间上,函数可能有若干个极值点,也可能不存在极值点;函数可以只有极大值,没有极小值,或者只有极小值没有极大值,也可能既有极大值,又有极小值.极大值不一定比极小值大,极小值也不一定比极大值小.一、求函数的极值求下列函数的极值:(1)f(x)=x3-12x;(2)f(x)=eq\f(2x,x2+1)-2.思路分析:首先从方程f′(x)=0入手,求出在函数f(x)的定义域内所有可能的极值点,然后按照函数极值的定义判断这些点是否为极值点.1.函数y=1+3x-x3有极大值__________,极小值__________.2.求函数f(x)=x3-3x2-9x+5的极值.利用导数求函数极值的步骤:(1)求导数f′(x);(2)求方程f′(x)=0的所有实数根;(3)考察在每个根x0附近,从左到右导函数f′(x)的符号如何变化:①如果f′(x)的符号由正变负,则f(x0)是极大值;②如果由负变正,则f(x0)是极小值;③如果在f′(x)=0的根x=x0的左右侧f′(x)的符号不变,则不是极值点.二、已知函数的极值求参数范围已知函数f(x)=ax3+bx+2在x=1处取得极值,且极值为0.(1)求a,b的值;(2)求f(x)的另一个极值.思路分析:由极值的定义可知f′(1)=0,再结合f(1)=0,建立关于a,b的方程即可求得a,b的值,从而得出另一个极值.1.已知函数y=-x3+6x2+m有极大值13,则m的值为________.2.若函数f(x)=x3+ax在R上有两个极值点,则实数a的取值范围是__________.1.已知函数极值情况,逆向应用,确定函数的解析式,进而研究函数性质时,注意两点:(1)常根据极值点处导数为0和已知极值(或极值之间的关系)列方程组,利用待定系数法求解;(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.2.对于可导函数f(x),若它有极值点x0,则必有f′(x0)=0,因此函数【阅读全文】
zq9 | 2019-01-23 | 阅读(353) | 评论(437)
以下是针对女娄菜进行的一系列研究,请回答相关问题:(1)女娄菜抗病性状受显性基因B控制。【阅读全文】
gxj | 2019-01-23 | 阅读(344) | 评论(680)
PAGE习题课——数列求和课后篇巩固探究A组1.已知数列{an}的前n项和为Sn,若an=1n(n+2),则                解析因为an=1n所以S5=a1+a2+a3+a4+a5=12答案D2.已知数列{an}的通项公式an=1n+n+1,若该数列的前k项之和等于9,则解析因为an=1n+n+1=n+1-n,所以其前n项和Sn=(2-1)+(3-2)+…+(n+1-n)答案A3.数列1,2,3,42716,…的前n项和为(  A.(n2+n-2)+(n+1)+1-3C.(n2-n+2)-(n+1)+31解析数列的前n项和为1++2++3++…+n+12×32n-1=(1+2+3+…+n)+12+34+98+…+1答案A4.已知{an}为等比数列,{bn}为等差数列,且b1=0,cn=an+bn,若数列{cn}是1,1,2,…,则数列{cn}的前10项和为(  )解析由题意可得a1=1,设数列{an}的公比为q,数列{bn}的公差为d,则q+d=1,q2+2d∵q≠0,∴q=2,d=-1.∴an=2n-1,bn=(n-1)(-1)=1-n,∴cn=2n-1+1-n.设数列{cn}的前n项和为Sn,则S10=20+0+21-1+…+29-9=(20+21+…+29)-(1+2+…+9)=1-2101-2-答案A5.已知数列{an}满足a1=1,a2=2,an+2=1+解析由题意可得a3=a1+1,a5=a3+1=a1+2,所以奇数项组成以公差为1,首项为1的等差数列,共有9项,因此S奇=9(1+9)2=45.偶数项a4=2a2,a6=2a4=22a2,因此偶数项组成以2为首项,2为公比的等比数列,共有9项,所以S偶=2(1-29)1-2答案D6.已知数列{an}的通项公式an=2n-12n,则其前n项和为解析数列{an}的前n项和Sn=2×1-12+2×2-122+…+2n-12n=2(1答案n2+n+12n7.数列112+3,1解析∵an=1n∴Sn=11=1=1118答案118.已知等差数列{an}的前n项和Sn满足S3=0,S5=-5.(1)求{an}的通项公式;(2)求数列1a2n-1a解(1)设{an}的公差为d,则Sn=na1+n(由已知可得3解得a故{an}的通项公式为an=2-n.(2)由(1)知1a从而数列1a2nTn=1=n19.导学号04994055(2017·辽宁统考)已知等差数列{an}的公差为2,且a1,a1+a2,2(a1+a4)成等比数列.(1)求数列{an}的通项公式;(2)设数列an2n-1的前n项和为Sn,求证:(1)解∵{an}为等差数列,∴a2=a1+d=a1+2,a4=a1+3d=a1+6.∵a1,a1+a2,2(a1+a4)成等比数列,∴(a1+a2)2=2a1(a1+a4即(2a1+2)2=2a1(2a解得a1=1,∴an=1+2×(n-1)=2n-1.(2)证明由(1),知an∴Sn=120+321Sn=121+322①-②,得Sn=1+21=1+2×1=1+2-1=3-4=3-2n∴Sn=6-2n∵n∈N*,2n+3∴Sn=6-2n+32B组1.已知数列{an}的通项公式an=(-1)n-1n2,则其前n项和为(  )                A.(-1)n-1n(n+1)(n+1解析依题意Sn=12-22+32-42+…+(-1)n-1n2.当n为偶数时,Sn=12-22+32-42+…-n2=(12-22)+(32-42)+…+[(n-1)2-n2]=-[1+2+3+4+…+(n-1)+n]=-n(当n为奇数时,Sn=12-22+32-42+…-(n-1)2+n2=Sn-1+n∴Sn=(-1)n-1n(n+1答案A2.已知数列{an}为12,13+23,14+24++1解析∵an=1+2+3+…∴bn=1anan∴Sn=41=41-答案A3.已知Sn是数列{an}的前n项和,a1=1,a2=2,a3=3,数列{an+an+1+an+2}是公差为2的等差数列,则S25=(  )解析令bn=an+an+1+an+2,则b1=1+2+3=6,由题意知bn=6+2(n-1)=2【阅读全文】
pwx | 2019-01-23 | 阅读(607) | 评论(944)
时间:古时候人物:曹操、曹操的儿子、官员事情的起因第一自然段讲了一件什么事?大象又高又大,身子像一堵墙,腿像四根柱子。【阅读全文】
尊龙人生就是博旧版服务,尊龙人生就是博旧版服务,尊龙人生就是博旧版服务,尊龙人生就是博旧版服务,尊龙人生就是博旧版服务,尊龙人生就是博旧版服务
vsy | 2019-01-23 | 阅读(828) | 评论(491)
③若x为4和9的比例中项,则x=。【阅读全文】
0ii | 2019-01-22 | 阅读(670) | 评论(680)
说话训练1.许多年过去了,我们的校园仍然是那么书声琅琅,仍然是那么生机勃勃,仍然是那么整洁。【阅读全文】
t8e | 2019-01-22 | 阅读(293) | 评论(137)
按《实施办法》的规定,今年采取分阶段考核办法(四个阶段),实行红黄旗制度,完成好的授与红旗,差的黄牌警告,在阶段性考核过程中,只要有两次被黄旗警告的,单位的第一第二责任人将就地免职,两年内不得安排实职。【阅读全文】
wn9 | 2019-01-22 | 阅读(572) | 评论(769)
通过系列讲话的学习,发现自己存以下五方面的问题。【阅读全文】
gmz | 2019-01-22 | 阅读(371) | 评论(324)
虽然自己目前写得只是一些比较小的材料,但也还颇感吃力,甚至成型的材料连自己看了都不是很满意,业务素质亟待提高。【阅读全文】
io7 | 2019-01-21 | 阅读(481) | 评论(245)
(5)一张美丽的脸这点也许有人不赞同,但不可否认人都爱美好的东西,优秀的外型,总是让人更容易接受。【阅读全文】
cpa | 2019-01-21 | 阅读(986) | 评论(87)
之后,你才可以将这粒营养丰富的“活维生素丸”吃下。【阅读全文】
一周热点
本站互助
共5页

友情链接,当前时间:2019-01-24

利来国际AG旗舰厅 利来国际手机版 利来国际老牌 利来国际w66最新 利来国际w66利来国际w66
利来国际娱乐老牌 利来国际w66网页版 w66.com 利来国际w66.com www.v66利来国际
利来国际最给利的老牌最新 利来电游 利来娱乐国际 利来国际AG旗舰厅 w66.com
利来国际最给力的老牌 利来娱乐w66 利来国际备用 w66利来 国际利来ag厅
万载县| 宁都县| 平果县| 灌云县| 荔波县| 榆林市| 青河县| 志丹县| 潞西市| 东方市| 家居| 大港区| 北辰区| 海阳市| 正宁县| 漳平市| 游戏| 阿尔山市| 贺州市| 苍溪县| 通海县| 金堂县| 建水县| 衢州市| 中卫市| 南丹县| 石狮市| 高州市| 临汾市| 东安县| 资源县| 哈巴河县| 阜新市| 南充市| 于都县| 广宗县| 新干县| 清水河县| 奉贤区| 信阳市| 法库县| http://m.76749546.cn http://m.61391681.cn http://m.51968207.cn http://m.65795882.cn http://m.56270755.cn http://m.20097261.cn